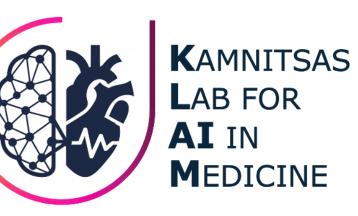


UN

Evaluating Reliability in Medical DNNs: A Critical Analysis of Feature and Confidence-based Out-of-Distribution Detection



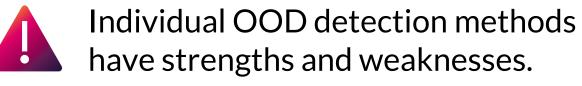
Harry Anthony, Konstantinos Kamnitsas

Department of Engineering Science, University of Oxford, Oxford, UK.

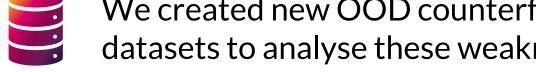
Marry.anthony@eng.ox.ac.uk

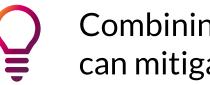
1. What is Out-Of-Distribution (OOD) detection?

Reliable neural networks must detect inputs that are **out-of-distribution (OOD)**.



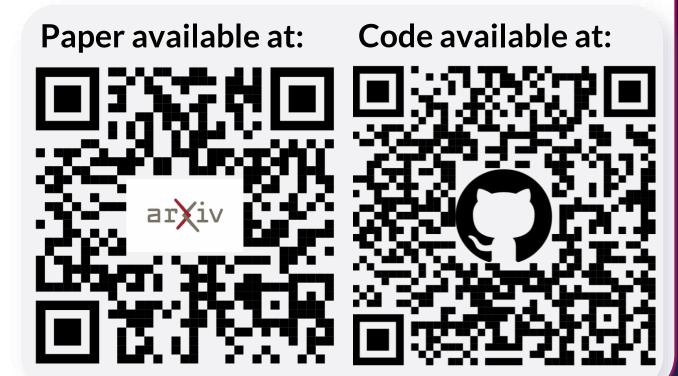


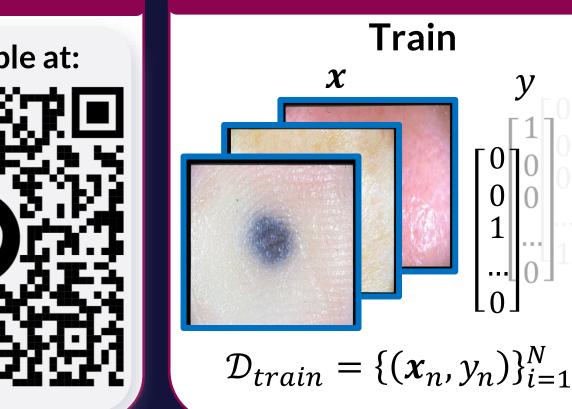


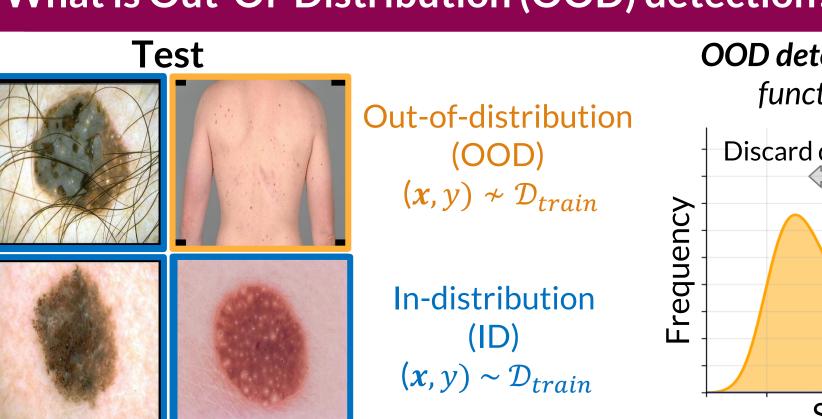


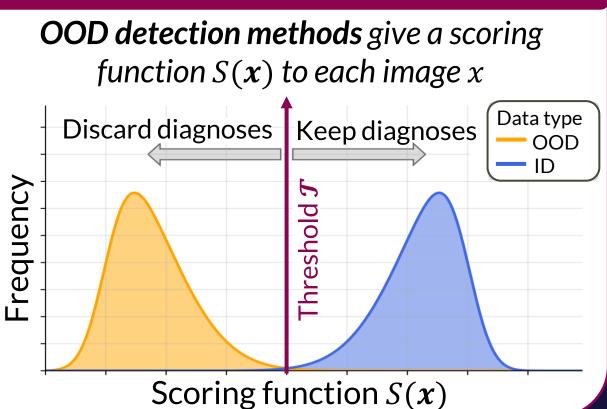
We created new OOD counterfactual datasets to analyse these weaknesses.

Combining complementary methods can mitigate against their weaknesses.









HarryAnthony

@HarryEJAnthony

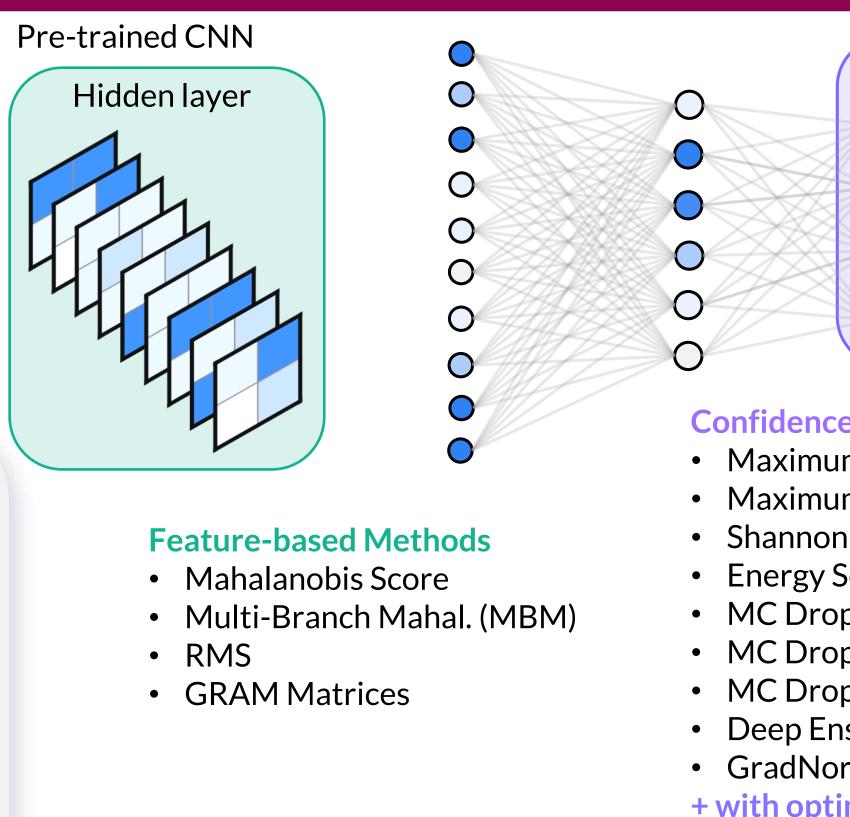
2. OOD Detection benchmarks

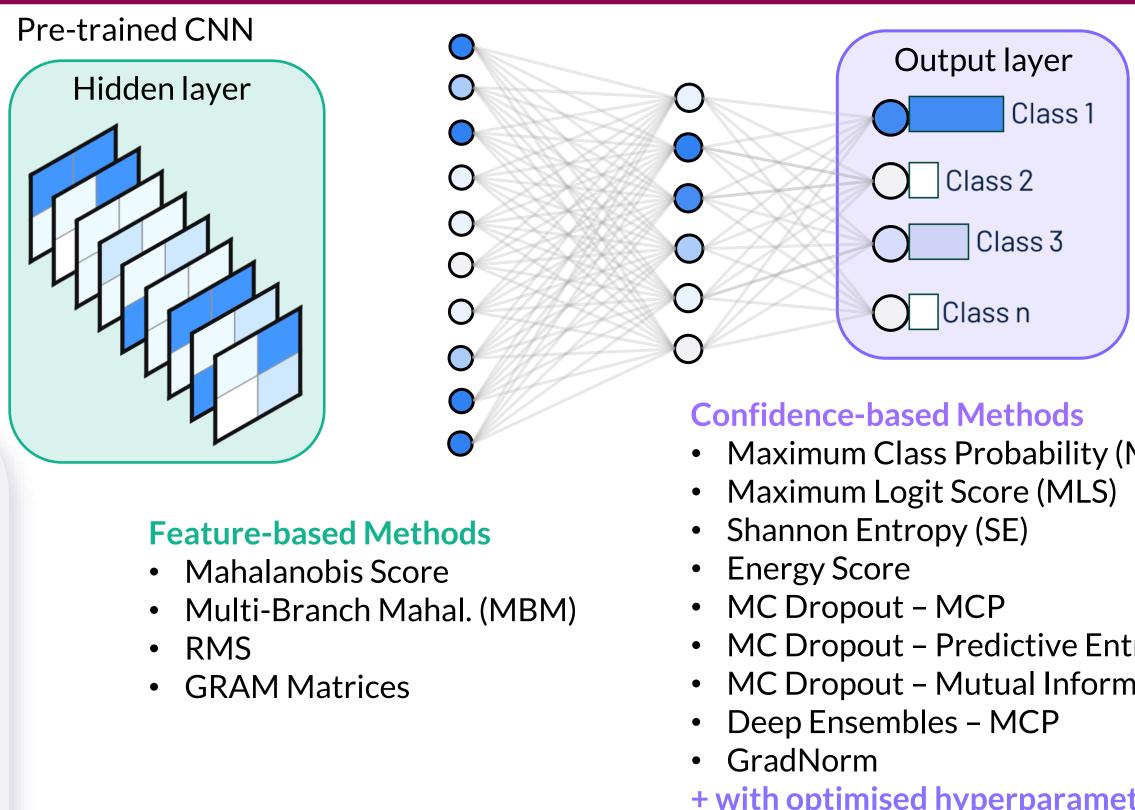
a) New out-of-distribution benchmarks

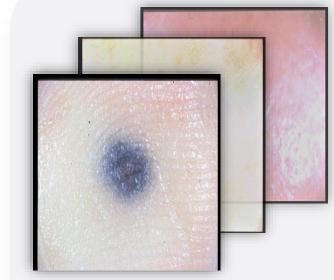
Training data: No rulers (90% ID data)

Introduction

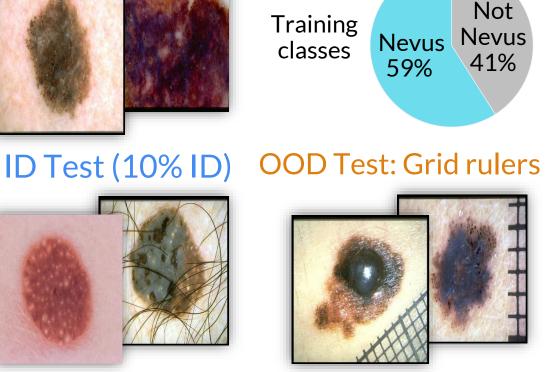
We analysed **Post-hoc methods** which are applied to pre-trained models







D7P **Dermatology dataset**

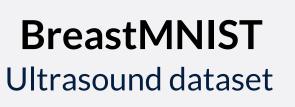


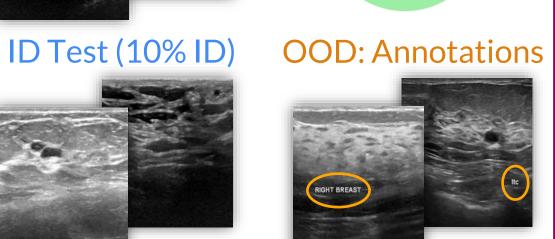
Training data: No annotations (90% ID) Normal 1alıgnant

17%

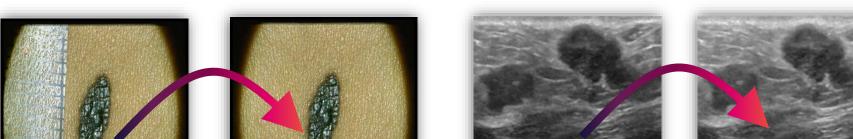
Benign 56%

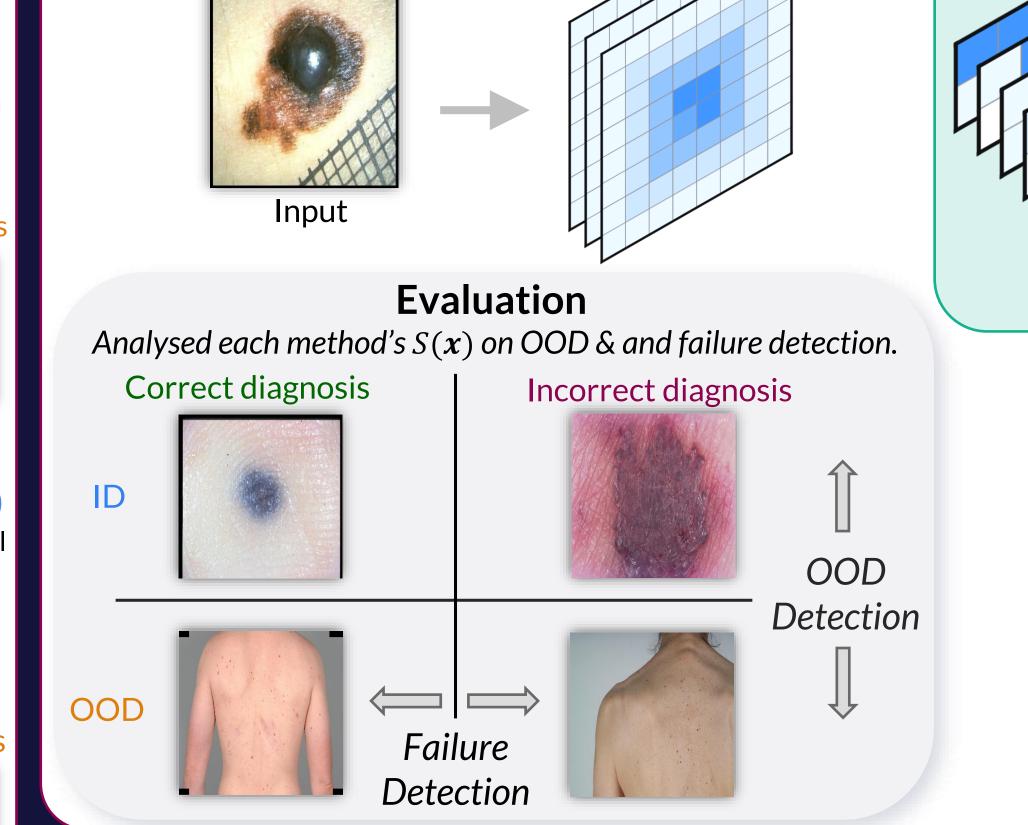






b) New Counterfactual Datasets





- Maximum Class Probability (MCP)

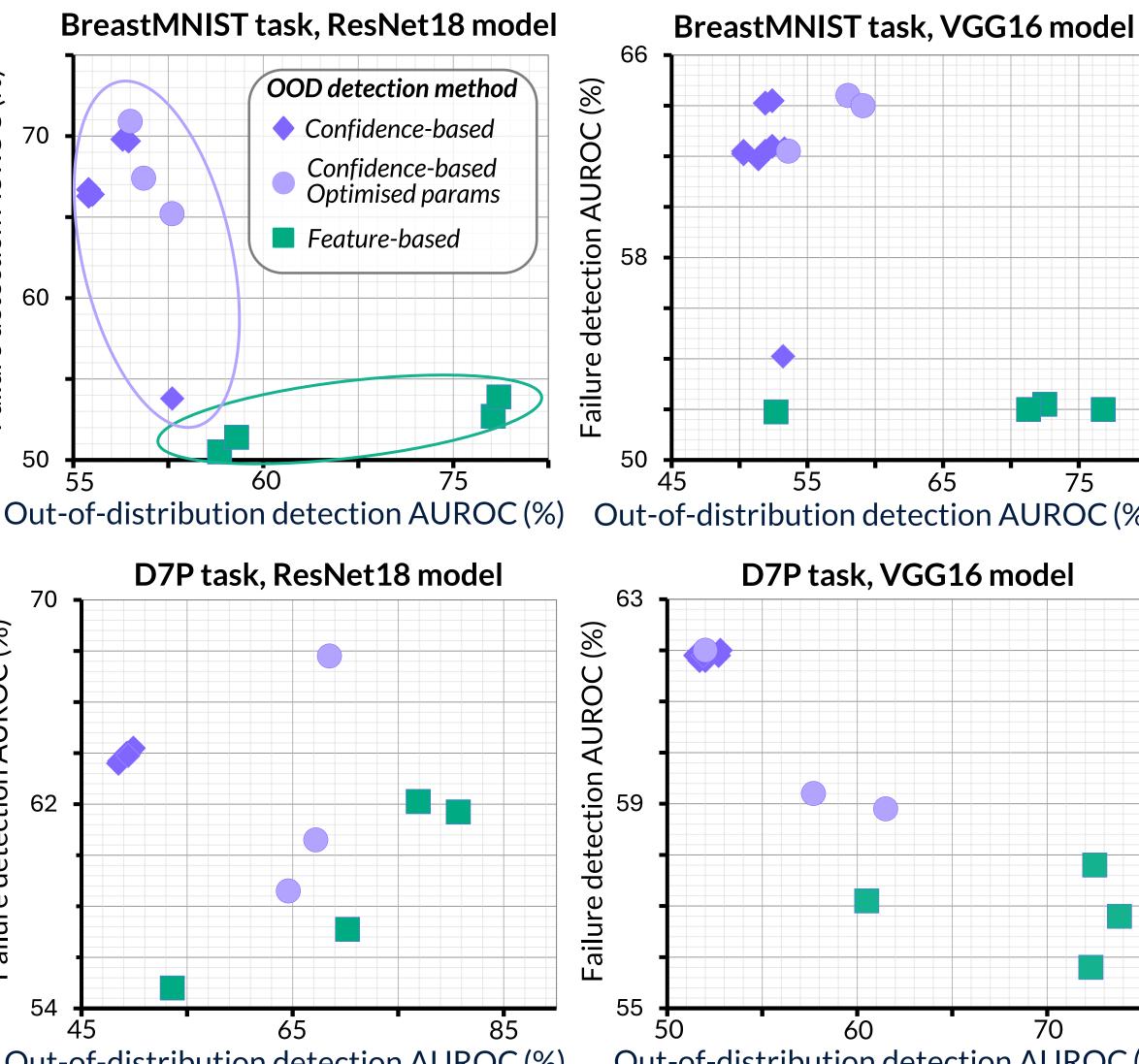
- MC Dropout Predictive Entropy
- MC Dropout Mutual Information

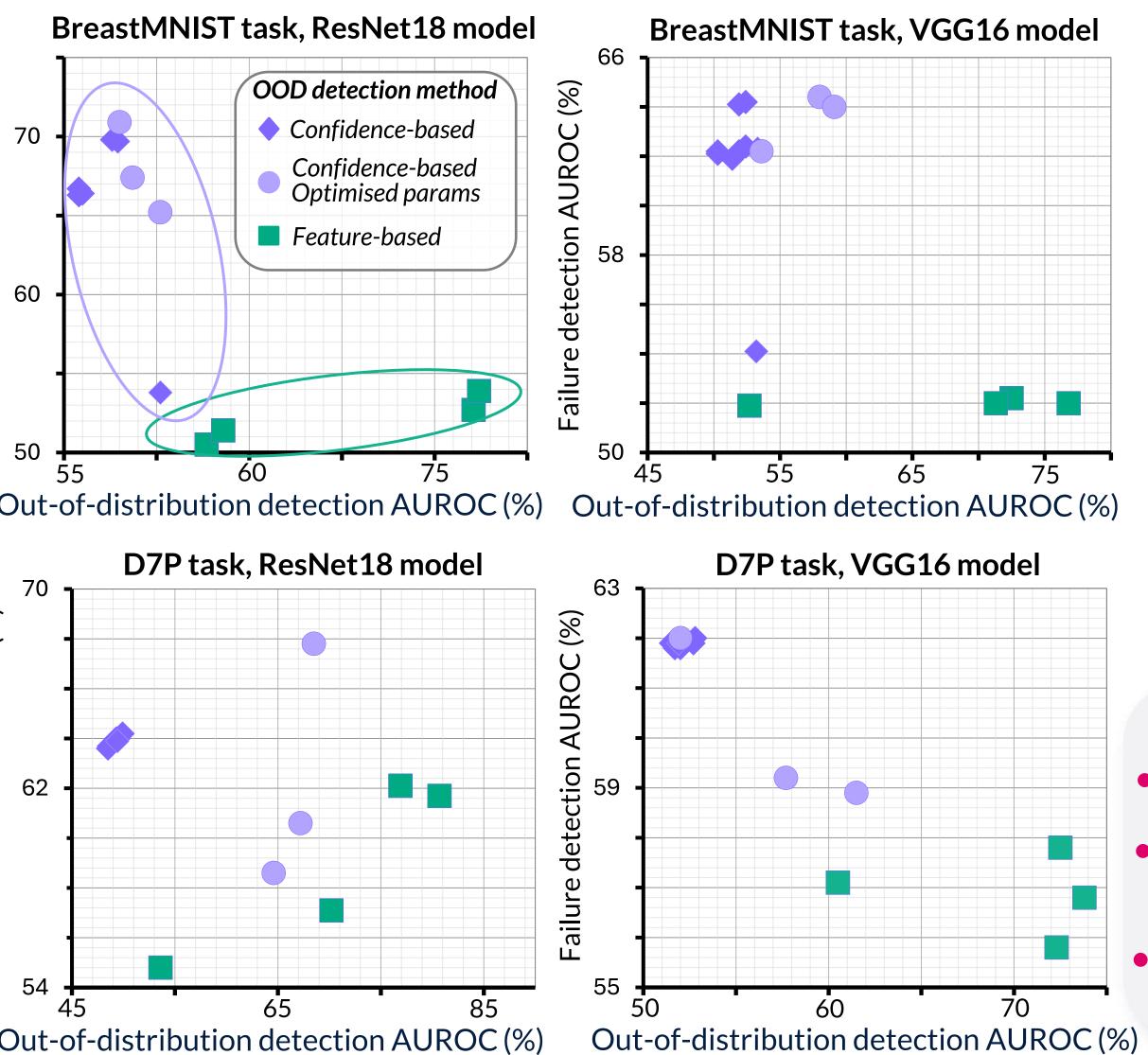
- + with optimised hyperparameters
- ODIN
- ReAct
- DICE

4. Experiments on OOD detection tasks

3. Out-of-distribution Detection Methods: Confidence-based & Feature-based

a) OOD detection and failure detection evaluation

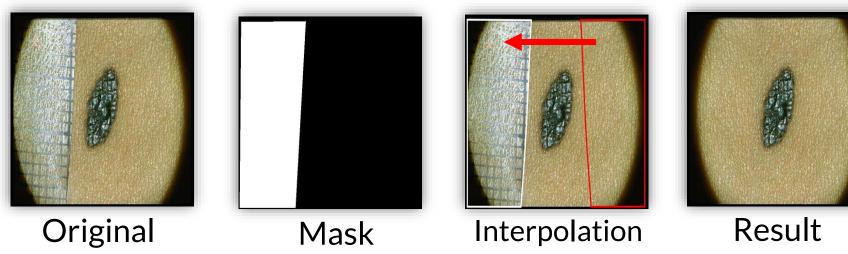




b) Why do confidence-based methods have poor OOD detection?

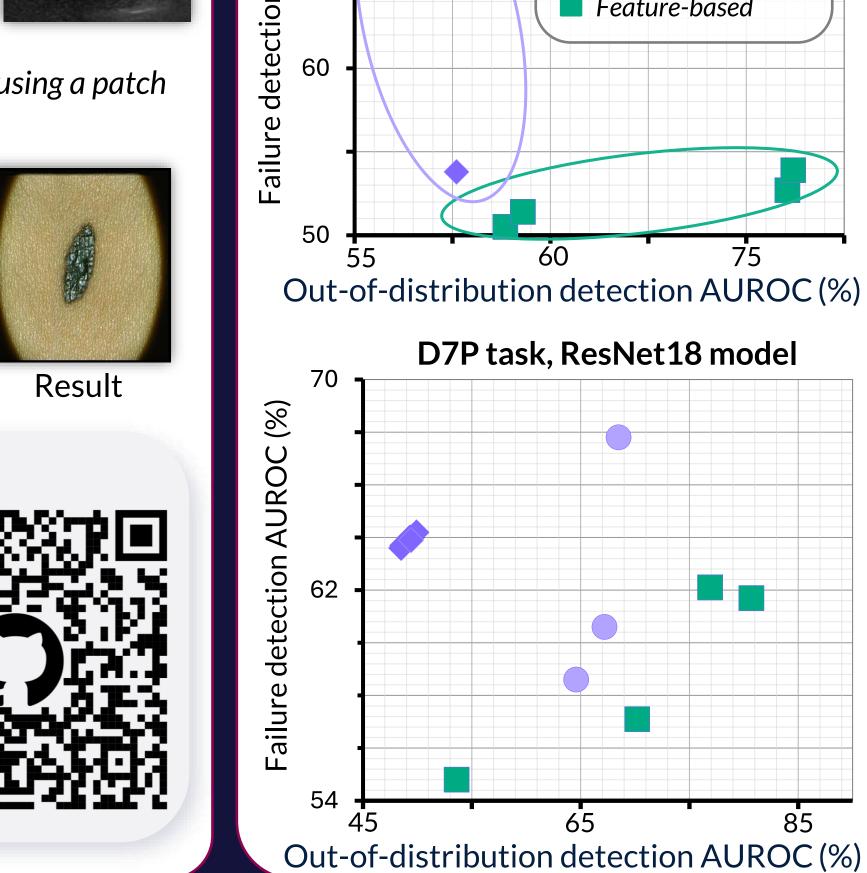
Image

Dataset was created with **inter-image interpolation**, using a patch from the same image to remove OOD artefacts.



Access this new data

- Annotations for 2 new **OOD** benchmarks
- Pixel-wise artefact masks
- 478 image counterfactual datasets



71%

% of original test set

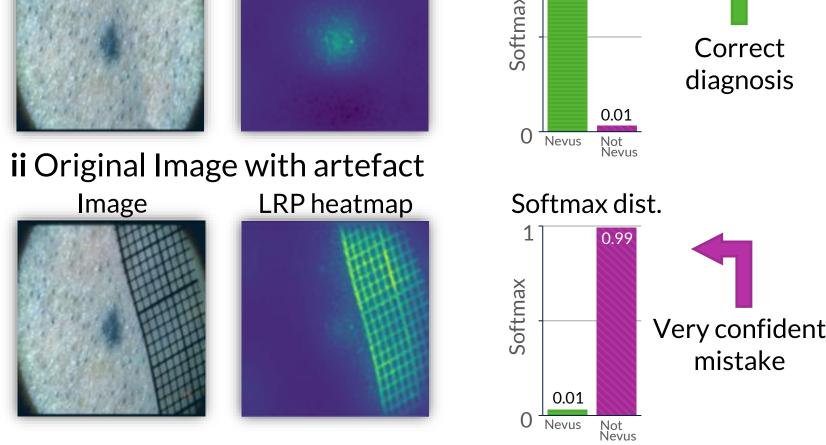
76%

of original test set

%

(%)

00



 \rightarrow OOD artefacts can lead to high confidence predictions which confidence-based methods won't detect!

Com Key Takeaways

• Out-of-distribution detection \neq Failure detection

- Confidence-based methods typically outperform feature-based methods at Failure Detection
- Feature-based methods typically outperform confidence-based methods at OOD Detection

5. Combining OOD detection methods to mitigate their weaknesses

a) Method for studying diagnoses above S(x) threshold

1. Sort all OOD images into one of four categories

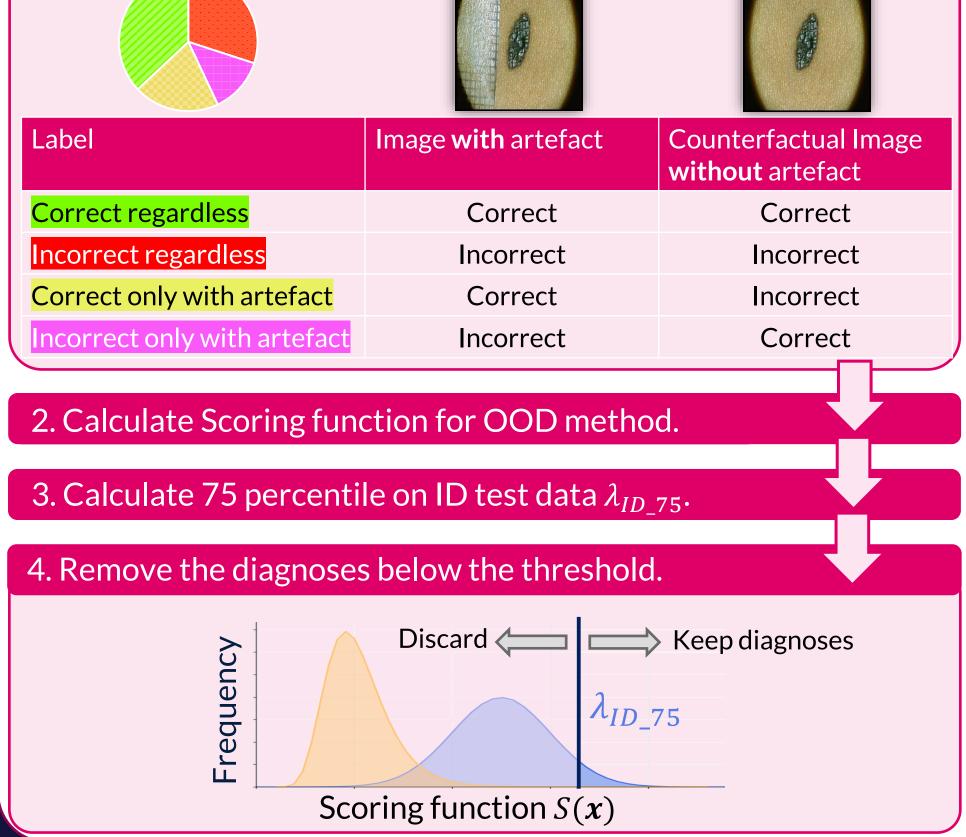
b) Results for a confidence and a feature-based method (and a combination)				
Correct regardless	Incorrect regardless	Correct only with artefact	Incorrect only with artefact	

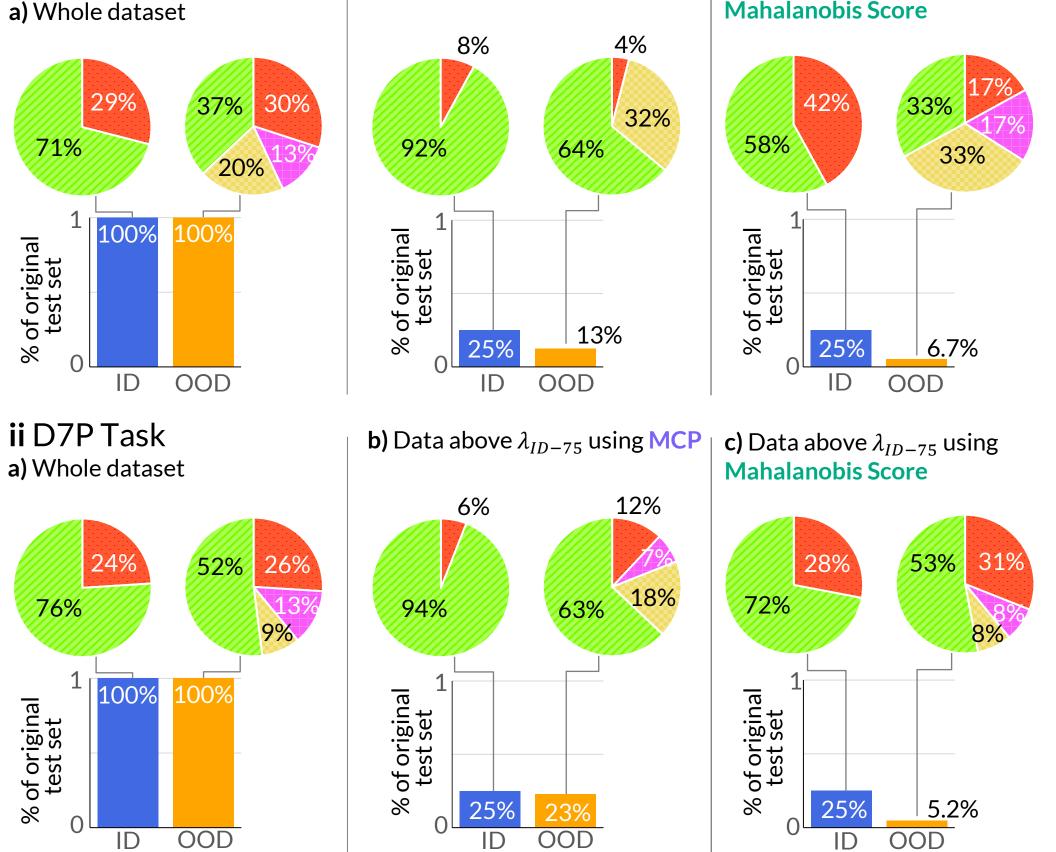
i BreastMNIST Task c) Data above λ_{ID-75} using **b)** Data above λ_{ID-75} using MCP Mahalanobis Score

d) Data above λ_{ID-75} using Mahalanobis Score,

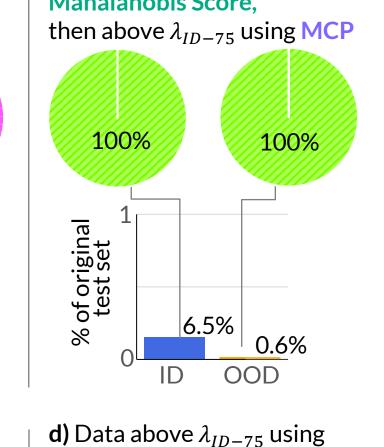
c) In-depth insights

• Correct only with artefact diagnoses can inflate failure detection AUROC.





ID



Mahalanobis Score,

89%

% of original test set

then above λ_{ID-75} using MCP

6.5%

ID

100%

0.4%

OOD

• Accuracy: 92% 92% OOD 32% • Accuracy: 64+32=96% > 92% Correct regardless: 64% < 92%

 \rightarrow Could give false sense of security

- OOD detection methods with high OOD AUROC, but which also cause a higher risk of incorrect diagnoses, may not make neural nets more trustworthy.
- Using multiple detectors leads to more discarded diagnoses, but the remaining diagnoses are more trustworthy.

Comparent Key Takeaways

Combining confidence & featurebased methods in a pipeline can mitigate their respective weaknesses.